Abstract
A carbon ion categorized as a heavy ion particle has been used for cancer radiotherapy. High linear energy transfer (LET) carbon ion irradiation deposits energy at a high density along a particle track, generating multiple types of DNA damage. Complex DNA lesions, comprising DNA double-strand breaks (DSBs), single-strand breaks, and base damage within 1-2 helical turns (<3-4nm), are thought to be difficult to repair and critically influence cell viability. In addition to the effect of lesion complexity, the most recent studies have demonstrated another characteristic of high LET particle radiation-induced DNA damage, clustered DSBs. Clustered DSBs are defined as the formation of multiple DSBs in close proximity where the scale of clustering is approximately 1-2μm3, i.e., the scale of the event is estimated to be > ∼1Mbp. This chapter reviews the hallmarks of clustered DSBs and how such DNA damage influences genome instability and cell viability in the context of high LET carbon ion radiotherapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.