Abstract
Multielemental stable isotope analysis of persistent organic pollutants (POPs) has the potential to characterize sources, sinks, and degradation processes in the environment. To verify the applicability of this approach for source identification of hexachlorocyclohexane (HCHs), we provide a data set of carbon, hydrogen, and chlorine stable isotope ratios (δ13C, δ2H, δ37Cl) of its main stereoisomers (α-, β-, δ- and γ-HCHs) from a sample collection based on worldwide manufacturing. This sample collection comprises production stocks, agricultural and pharmaceutical products, chemical waste dumps, and analytical-grade material, covering the production time period from the late 1960s until now. Stable isotope ratios of HCHs cover the ranges from -233‰ to +1‰, from -35.9‰ to -22.7‰, and from -6.69‰ to +0.54‰ for δ2H, δ13C, and δ37Cl values, respectively. Four groups of samples with distinct multielemental stable isotope fingerprints were differentiated, most probably as a result of purification and isolation processes. No clear temporal trend in the isotope compositions of HCHs was found at the global scale. The multielemental stable isotope fingerprints facilitate the source identification of HCHs at the regional scale and can be used to assess transformation processes. The data set and methodology reported herein provide basic information for the assessment of environmental field sites contaminated with HCHs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.