Abstract
Inactivating hyperactivated transcription factors can overcome tumor therapy resistance, but their undruggable features limit the development of conventional inhibitors. Here, we report that carbon-centered free radicals (R⋅) can inactivate NF-κB transcription by capping the active sites in both NF-κB and DNA. We construct a type of thermosensitive R⋅ initiator loaded amphiphilic nano-micelles to facilitate intracellular delivery of R⋅. At a temperature of 43 °C, the generated R⋅ engage in electrophilic radical addition towards double bonds in nucleotide bases, and simultaneously cap the sulfhydryl residues in NF-κB through radical chain reaction. As a result, both NF-κB nuclear translocation and NF-κB-DNA binding are suppressed, leading to a remarkable NF-κB inhibition of up to 94.1 %. We have further applied R⋅ micelles in a clinical radiofrequency ablation tumor therapy model, showing remarkable NF-κB inactivation and consequently tumor metastasis inhibition. Radical capping strategy not only provides a method to solve the heat-sink effect in clinic tumor hyperthermia, but also suggests a new perspective for controllable modification of biomacromolecules in cancer therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.