Abstract

Incompatibility of electrolytes with Li anode impedes the application of solid-state batteries. Aluminum with appropriate potential, high-capacity, and electronic conductivity can alloy with Li spontaneously and is proposed herein as a carbon-free and binder-free anode of an all-solid-state Li-S battery (LSB). A biphasic lithiation reaction of Al with modest volume change was revealed by in situ characterization. The Li0.8Al alloy anode showed excellent compatibility toward the Li10GeP2S12 (LGPS) electrolyte, as verified by the steady Li0.8Al-LGPS-Li0.8Al cell operation for over 2500 hours at 0.5 mA cm−2. An all-solid-state LSB comprising Li0.8Al alloy anode and melting-coated S composite cathode functioned steadily for over 200 cycles with a capacity retention of 93.29%. Furthermore, a Li-S full cell with a low negative-to-positive ratio of 1.125 delivered a specific energy of 541 Wh kg−1. This work provides an applicable anode selection for all-solid-state LSBs and promotes their practical procedure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.