Abstract

Bio-plastics such as polylactic acid (PLA) have been investigated as a sustainable alternative to petroleum-based plastics. In this study, the carbon footprint of packaging films made from LDPE, PLA, and PLA/PBAT blends was measured with three different waste scenarios based on the database of South Korea using life cycle assessment (LCA). The LCA followed ISO standards, and was a cradle-to-grave analysis. The functional unit was defined as 400,000 pieces of a film of 300 × 250 mm with thickness of 0.06 mm for packaging bag manufacturing. The waste treatments considered were incineration, landfill, and recycling applied with the present conditions of South Korea. Under the present analysis conditions, the PLA film with landfill was the most effective for reducing carbon emission. The PLA/PBAT with incineration was the worst case among the packaging films tested. Incineration was the worst choice of waste treatment in terms of carbon dioxide emissions. Generally, landfill may not be the best option in terms of sustainability but landfill was a better option for waste treatment than incineration. In addition, before bio-plastics are blended with other material, the blending material should first be evaluated for its environmental impact. The blended bio-plastics with PLA, such as PLA/PBAT, can be more inimical to the environment in terms of carbon dioxide emissions than existing materials, such as LDPE.

Highlights

  • Bio-plastics have been regarded as a sustainable alternatives to petroleum-based plastics [1,2,3]

  • This study aims to evaluate and compare global warming potential (GWP) value (CO2 eq.) of packaging films made from low-density polyethylene (LDPE), polylactic acid (PLA), and PLA/polybutylene adipate terephthalate (PBAT) blends focusing on waste treatment scenarios with the cradle-to-grave approach in South Korea

  • The goal of this study is to evaluate and compare the carbon footprint of packaging films made from LDPE, PLA, and PLA/PBAT blends using life cycle assessment (LCA) method

Read more

Summary

Introduction

Bio-plastics have been regarded as a sustainable alternatives to petroleum-based plastics [1,2,3]. Polylactic acid (PLA) is noted as the most promising material in the bio-plastic sector. Since PLA has properties comparable to those of polystyrene (PS) and polyethylene terephthalate (PET), it can replace these petroleum-based plastics for a wide range of applications [4,5]. In the global market of bio-plastics, the biodegradable polymers market is expected to grow to 5324.4 million dollars by 2021 [6]. Various attempts have been made to improve the properties of PLA through blending with other bio-plastics [8,9,10,11,12,13]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.