Abstract

Abstract Thermoformed trays made from biobased materials were prepared from agricultural waste (seeds or tubers), plasticizer and polypropylene (PP). A talc-filled PP thermoformed tray was used for comparison. The carbon footprint of the thermoformed trays was calculated according to PAS 2050. System boundaries were established according to a business-to-business approach, based on data collected regarding the raw material production, transportation and processing. Biobased trays yield a lower carbon footprint than talc-filled polypropylene trays as a result of renewable resource input, a lower processing temperature and shorter thermoforming cycle. The carbon footprint reduction could be achieved through optimization of the thermoforming process and the use of low-footprint raw materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.