Abstract

This research aims to study the carbon footprint based on the life cycle assessment of biomass power plants. Covering the acquisition of raw materials to the end of the production process in biomass power plants (cradle to grave: C2G). The study proposes constructive ways to reduce the carbon footprint of biomass power plants. Conducted research consisting of 3 phases: phase 1, the rubber plantation process; phase 2, the rubber wood processing plant; and phase 3, the biomass power plant. Assessment of carbon footprint: following the principle of life cycle assessment, the results of the carbon footprint assessment found that in Phase 1, the process of growing rubber trees throughout the life cycle calculated the carbon footprint of the sample group as average greenhouse gas emissions from fresh rubber wood and combined with the average greenhouse gas emissions from rubber wood timbers of 1.1186 kgCO2eq per day. In phase 2, rubber wood processing plants throughout the life cycle have average greenhouse gas emissions of 15,319.11 kgCO2eq per day. In phase 3, biomass power plants electricity capacity is 9.9 MW per day, and their greenhouse gas emissions are 44,753.60 kg CO2eq per day. The result found that greenhouse gas emissions from biomass power plants per 1 kWh accounted for a carbon dioxide equivalent of 4.52 kgCO2eq. Calculate the predictor factors affecting the amount of greenhouse gases in biomass power plants in raw score form as Y = 373.516 +.082 (raw material quantity), where Y is the greenhouse gas emission (kgCO2eq), using the forecast equation in standard score form. With Z =.983raw material quantity3, It was found that the quantity of raw materials had a positive correlation with the quantity of greenhouse gases at a statistical significance of .01 with a correlation coefficient of .983, which could explain the variability of the variables of the quantity of greenhouse gases with 96.70 percent accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.