Abstract
This study was carried out to find out major factors to mitigate carbon emission using Life Cycle Assessment (LCA). System boundary of LCA was confined from sowing to packaging during vegetable production. Input amount of agri-materials was calculated on 2007 Income reference of white radish, chinese cabbage and chive produced at open field and film house published by Rural Development Administration. Domestic data and Ecoinvent data were used for emission factors of each agri-material based on the 1996 IPCC guideline. Carbon footprint of white radish was 0.19 kg CO₂ kg -1 at open fields, 0.133 kg CO₂ kg -1 at film house, that of chinese cabbage was 0.22 kg CO₂ kg -1 at open fields, 0.19 kg CO₂ kg -1 at film house, and that of chive was 0.66 kg CO₂ kg -1 at open fields and 1.04 kg CO₂ kg -1 at film house. The high carbon footprint of chive was related to lower vegetable production and higher fuel usage as compared to white radish and Chinese cabbage. The mean proportion of carbon emission was 35.7% during the manufacturing byproduct fertilizer; white radish at open fields was 50.6%, white radish at film house 13.1%, Chinese cabbage at outdoor 38.4%, Chinese cabbage at film house 34.0%, chive at outdoor 50.6%, and chive at film house 36.0%. Carbon emission, on average, for the step of manufacturing and combustion accounted for 16.1% of the total emission; white radish at open fields was 4.3%, white radish at film house 15.6%, Chinese cabbage at open fields 6.9%, Chinese cabbage at film house 19.0%, chive at open fields 12.5%, and chive at film house 29.1%. On the while, mean proportion of carbon footprint for the step of N₂O emission was 29.2%; white radish at open fields was 39.2%, white radish at film house 41.9%, Chinese cabbage at open fields 34.4%, Chinese cabbage at film house 23.1%, chive at open fields 28.8%, and chive at film house 17.1%. Fertilizer was the primary factor and fuel was the secondary factor for carbon emission among the vegetables of this study. It was suggested to use Heug-To-Ram web-service system, http://soil.rda.go.kr, for the scientific fertilization based on soil testing, and for increase of energy efficiency to produce low carbon vegetable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.