Abstract
With an increasing focus on renewable fuels, it is vital to understand the environmental impacts from various alternative transportation fuel products and processes under development. This study analyzes greenhouse gas (GHG) emissions of renewable gasoline and diesel produced by the integrated hydropyrolysis and hydroconversion (IH2) process at an existing petroleum refinery in Memphis, TN, USA. In this study, we considered forest residues from the southeastern US and corn stover from the Midwest as the two feedstocks. H2 required for the process is either imported from a steam methane reformer using natural gas or produced from C1–C3 gas coproducts of the IH2 process. Life cycle GHG emission savings of 67–86% were calculated for IH2 gasoline and diesel compared to their fossil counterparts, depending on feedstock, transport and H2 sources. Monte Carlo simulations were conducted to assess the impact of input parameter uncertainty on the final GHG emission results. The impact of applying biochar coproduct ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.