Abstract

As the new generation of energy storage systems, the flexible battery can effectively broaden the application area and scope of energy storage devices. Flexibility and energy density are the two core evaluation parameters for the flexible battery. In this work, a flexible VS2 material (VS2 @CF) is fabricated by growing the VS2 nanosheet arrays on carbon foam (CF) using a simple hydrothermal method. Benefiting from the high electric conductivity and 3D foam structure, VS2 @CF shows an excellent rate capability (172.8mAh g-1 at 5 A g-1 ) and cycling performance (130.2mAh g-1 at 1 A g-1 after 1000 cycles) when it served as cathode material for aqueous zinc-ion batteries. More importantly, the quasi-solid-state battery VS2 @CF//Zn@CF assembled by the VS2 @CF cathode, CF-supported Zn anode, and a self-healing gel electrolyte also exhibits excellent rate capability (261.5 and 149.8 mAh g-1 at 0.2 and 5 A g-1 , respectively) and cycle performance with a capacity of 126.6 mAh g-1 after 100 cycles at 1 A g-1 . Moreover, the VS2 @CF//Zn@CF full cell also shows good flexible and self-healing properties, which can be charged and discharged normally under different bending angles and after being destroyed and then self-healing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.