Abstract

The weak inherent non-covalent interactions between carbon aerogel backbone nanoparticles obtained by the pyrolysis of conventional organic aerogel can lead to poor mechanical properties. When applied in the thermal protection system of a high-speed spacecraft, the preparation of carbon aerogel insulation materials with excellent formability and high mechanical strength still remains a huge challenge. This work reports an efficient approach for fabricating carbon foam-reinforced carbon aerogel composites by compounding the nanoporous polyimide aerogel into the microporous pre-carbonized phenolic resin-based carbon foam via vacuum impregnation, gelatinizing and co-carbonization. Benefiting from the co-shrinkage caused by co−carbonization, the thermal insulation capacity of the carbon aerogel and the formability of the pre−carbonized foam are efficiently utilized. The shrinkage, density and carbon yield of aerogels, pre-carbonized foams and the composites at different temperatures were measured to analyze the formation of the interfacial gap within the composite. The co-carbonization mechanism of the polyimide aerogels and phenolic resin-based pre-carbonized foams was analyzed through XPS, TG-MS, and FT-IR. Among the prepared samples, CF30-CPI-1000 °C with small interfacial gaps showed the lowest thermal conductivity, which was as low as 0.56 W/(m·K) at 1900 °C, and the corresponding compressive strength and elastic modulus were as high as 0.532 MPa and 9.091 MPa, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call