Abstract

Greenhouse gas (GHG) fluxes and soil organic carbon (SOC) accumulation in grassland ecosystems are intimately linked to grazing management. This study assessed the carbon equivalent flux (Ceq) from 1) an irrigated, heavily stocked, low-density grazing system, 2) a nonirrigated, lightly stocked, high-density grazing system, and 3) a grazing-exclusion pasture site on the basis of the GHG emissions from pasture soils and enteric methane emissions from cows grazing different pasture treatments. Soil organic carbon and total soil nitrogen stocks were measured but not included in Ceq determination because of study duration and time needed to observe a change in soil composition. Light- and heavy-stocking systems had 36% and 43% greater Ceq than nongrazed pasture sites, respectively ( < 0.01). The largest contributor to increased Ceq from grazing systems was enteric CH emissions, which represented 15% and 32% of the overall emissions for lightly and heavily stocked grazing systems, respectively. Across years, grazing systems also had increased nitrous oxide (N2O; < 0.01) and CH emissions from pasture soils ( < 0.01) compared with nongrazed pasture sites but, overall, minimally contributed to total emissions. Results indicate no clear difference in Ceqflux between the grazing systems studied when SOC change is not incorporated ( = 0.11). A greater stocking rate potentially increased total SOC stock ( = 0.02), the addition of SOC deeper into the soil horizon ( = 0.01), and soil OM content to 30 cm ( < 0.01). The incorporation of long-term annual carbon sequestration into the determination of Ceq could change results and possibly differentiate the grazing systems studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.