Abstract

In the current study, multiwalled carbon nanotubes (MWCNTs) and carbon particles (micron size) were employed to create carbon particle dispersions. At different impact angles, the erosion of abrasive particles in an air jet is examined. Carbon particles dispersed across a metal matrix increased the fibre bonding but decreased the mechanical strength. In the sample, carbon nanotubes make up 5% of the total. The strength of carbon nanotubes in matrix materials overcomes the growth in carbon particle length significantly. When carbon particles are present, the matrix material weakens and becomes brittle. Due to the effect of attrition on exposed surfaces, materials that are subjected to particle impingement are more vulnerable to erosive processes. Carbon has significantly improved the matrix material’s surface property. The research findings significantly affect 5% of the CNT composite. At 30°, 0.0033 g/min showed the least proportion of abrasive wear. Erosive wear decreases at the lowest impingement angle but increases as the impact angle increases. Since it causes brittleness, increasing the weight percentage of carbon particles is discouraged.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call