Abstract

A carbon fiber reinforced polymer (CFRP) laminate, with the top layer consisting of shredded fibers, is proposed and manufactured. The shredded fibers are aligned randomly on the surface to achieve a more isotropic conductivity, as is desired in antenna applications. Moreover, fiber shreds can be recycled from carbon fiber composites. Conductivity, permittivity, and permeability are obtained with the Nicolson-Ross-Weir method from material samples measured inside rectangular waveguides in the frequency range of 4 to 6 GHz. The decrease in material anisotropy results in negligible influence on antennas. This is shown by measuring the proposed CFRP as ground plane material for both a narrowband wire monopole antenna for 5.9 GHz and an ultrawideband conical monopole antenna for 1–10 GHz. For comparison, all measurements are repeated with a twill-weave CFRP.

Highlights

  • Composites are materials consisting of a mixture of components present as separate phases

  • Results for the permittivity, permeability, and conductivity of shred-Carbon fiber reinforced polymers (CFRP) are presented in Figures 4(a), 5(a), and 6(a), respectively and results for twill-CFRP are depicted in Figures 4(b), 5(b), and 6(b), respectively

  • Quasi-isotropic CFRP with shredded carbon fibers in random alignment on the top layer are proposed for antenna applications

Read more

Summary

Introduction

Composites are materials consisting of a mixture of components present as separate phases. They are created for engineering applications to combine the desired qualities of its individual components. Carbon fiber reinforced polymers (CFRP) are carbon fiber composites (CFC) consisting of carbon fibers embedded in a polymer matrix, typically a resin. The most common production technique is to build CFRP as laminates. These laminates are stacked from unidirectional or woven carbon fiber plies preimpregnated with resin, which are commonly referred to as prepreg. The laminate is stacked in a mold to form the desired part geometry, vacuum-bagged, and cured in an autoclave

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call