Abstract
Carbon fiber-reinforced gelatin composites have been prepared in our laboratory to obtain a novel biomaterial of improved mechanical properties. The swelling behavior (swelling rate, swelling kinetics, maximum solvent uptake, etc.) for both continuous carbon fiber-reinforced gelatin composite (CL/Gel) and short carbon fiber-reinforced gelatin composite (CS/Gel) are investigated. Experimental data show that the swelling process of the original gelatin and gelatin matrixes in both composites follows a second-order kinetics. The swelling of the gelatin matrixes in both composites proceeds slower than that of the pristine gelatin, and depends on fiber form and fiber volume fraction (Vf). Results indicate that the presence of carbon fibers suppresses the swelling of the gelatin matrixes in both composites. It is found that the gelatin matrix in CS/Gel possesses a smaller swelling rate and maximum solvent uptake than that in CL/Gel. A mechanism governing these phenomena is discussed in this article. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 994–998, 2000
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.