Abstract

Toughening a ceramic in a ceramic matrix composite (CMC) depends on an ability of the composite to tolerate an accumulation of matrix cracks. When the reinforcement phase is carbon fiber, these cracks leave the fiber susceptible to destructive oxidation by ingress of air during high temperature exposure. Generally, a graphitic carbon interface coating is applied to carbon fibers because it provides for a weak bond between fiber and matrix that is required to promote toughening. This investigation seeks to utilize a BN coating instead of a C coating in order to promote oxidation resistance. Like graphitic carbon, BN is soft and easily cleavable. Preliminary observations that C/BN/SiC CMC's using Toray T300 carbon fibers were highly brittle and of low strength lead to a requirement of heat treating the fibers prior to the CVD of BN for toughened composites to be fabricated. It is likely heat treating removed reactive functionalities from the fiber surface to yield a weakly adhered and compliant interface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call