Abstract

The construction of a cylindrical carbon fiber on-line detector is presented, featuring a novel way of sealing the carbon fiber microelectrode, the design of an interchangeable carbon fiber microelectrode-based flow cell and its interface with data-acquisition electronics. The two-electrode setup was used, where the regeneration of the carbon fiber working electrode surface between analyses was performed using an electrochemical procedure, typically −1/+1 V potential cycling. The detector was incorporated into the flow injection analysis manifold and the applicability of the developed sensing platform tested for monitoring a hexacyanoferrate (II/III) redox probe and the oxidizable compounds trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid), uric acid, and l-ascorbic acid, with dehydroascorbic acid as a negative control. Finally, the optimized procedure was utilized for the analysis of human blood serum reductive (antioxidant) capacity based on amperometric sensing and flow injection analysis at a flow rate of 10 μl/min. Amperometric responses for blood serum samples were evaluated for standard deviation, whose average value was estimated to be ±0.3 nA (n = 20). The electrolytic efficiency of the detector was on the order of % units, e.g. 2% for trolox. The flow cell geometry and application of carbon fiber electrodes resulted in the absence of dead volumes and passivation phenomena, in contrast to conventional high-surface-area electrochemical cells. We suppose that the complex technical solution presented here could find a broad range of applications in the on-line monitoring of other reducing low-molecular bioactives and of the redox properties of various body fluids or clinical samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.