Abstract

Lithium-sulfur (Li-S) batteries have remarkably high theoretical specific capacity as promising candidates for next-generation energy storage. However, the “polysulfides shuttle” effect hampers its commercial application. Here, we use a kind of rice paper as a raw material to get inorganic oxides doping carbon felt by the facile carbonization method, and then modified by a simple coating process using poly (fluorenyl ether ketone) and Super P slurry. The special structure of the carbon felt derived from rice paper and its modified layer endow the final electronic conductive interlayer with inherent polysulfides absorbents and ion Coulombic repulsion functions, respectively, which show synergistic effect for trapping polysulfides. As an interlayer of Li-S batteries, the obtained carbon felt/poly (fluorenyl ether ketone)& Super P (CFSS) interlayer shows excellent electrochemical performance in improving specific capacity and decreasing polarization. The batteries with CFSS interlayer exhibit a high capacity of 837 mA h g−1 at 2.0 C and a high initial capacity of 1073.4 mA h g−1 and good capacity retention of 824.5 mA h g−1 after 500 cycles at 0.5 C. CFSS interlayer also shows excellent anti-self-discharge performance. Therefore, the simple and economical CFSS interlayer can be considered as a promising component for high performance Li-S batteries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.