Abstract

This study reports on the first example, to our knowledge, of the usefulness of an ultrasound (US)-irradiation during an enzyme adsorption step, for enhancing the performance of a redox-enzyme-based amperometric biosensor. Horseradish peroxidase (HRP) and thionine (Th) were coadsorbed from a mixed aqueous solution of HRP and Th onto a carbon-felt (CF) under US-irradiation for 5 min with an ultransonic bath operating at 40 kHz frequency and 55 W of electric power output. The resulting HRP and Th-coadsorbed CF (HRP/Th-CF) was successfully used as a working electrode unit of a bioelectrocatalytic flow-detector for hydrogen peroxide (H(2)O(2)), which detects the cathodic peak currents based on the direct (unmediated) reduction of oxidized HRP intermediates at 0 V vs. Ag/AgCl. Compared with ordinary adsorption without US-irradiation, US-irradiation during the HRP adsorption step was effective to obtain highly sensitive peak current responses to H(2)O(2). The measurements of electrochemical impedance spectroscopy and cyclic voltammetry suggested that the adsorption of HRP and Th under the US-irradiation provides a suitable interfacial microenvironment for a favorable orientation and conformation of an enzyme with active site available for both substrates and the electrode, which results in larger bioelectrocatalytic activity. The peak currents for H(2)O(2) increased up to 3 × 10(-6) M (sensitivity, 4.72 µA/µM) with a lower detection limit of 2 × 10(-8) M (S/N = 3; current noise level, 0.03 µA).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.