Abstract
The influence of cattle grazing on carbon cycling in the mixed grass prairie was investigated by measuring the CO(2) exchange rate in pastures with a 13 year history of heavy or light grazing and an ungrazed exclosure at the High Plains Grasslands Research Station near Cheyenne, Wyo. In 1995, 1996 and 1997 a closed system chamber, which covered 1 m(2) of ground, was used every 3 weeks from April to October to measure midday CO(2) exchange rate. Green vegetation index (similar to leaf area index), soil respiration rate, species composition, soil water content, soil temperature, and air temperature were also measured to relate to CO(2) exchange rates of the 3 grazing treatments. Treatment differences varied among years, but overall early season (mid April to mid June) CO(2) exchange rates in the grazed pastures were higher (up to 2.5 X) than in the exclosure. Higher early season CO(2) exchange rates were associated with earlier spring green-up in grazed pastures, measured as higher green vegetation index. As the growing season progressed, green vegetation index increased in all pastures, but more so in the ungrazed exclosure, resulting in occasionally higher (up to 2 X) CO(2) exchange rate compared with grazed pastures late in the season. Seasonal treatment differences were not associated with soil temperature, soil respiration rate, or air temperature, nor was there a substantial change in species composition due to grazing. We hypothesize that early spring green-up and higher early season CO(2) exchange rate in grazed pastures may be due to better light penetration and a warmer microclimate near the soil surface because of less litter and standing dead compared to the ungrazed pastures. When all the measurements were averaged over the entire season, there was no difference in CO(2) exchange rate between heavily grazed, lightly grazed and ungrazed pastures in this ecosystem. DOI:10.2458/azu_jrm_v53i2_lecain
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.