Abstract

At the 75th United Nations General Assembly, China committed to peaking carbon dioxide emissions by 2030 and achieving carbon neutrality by 2060. In response, the national standard “General Specification for Building Energy Conservation and Utilization of Renewable Energy” has been adopted across 20 provinces and cities in seven major regions, including North China, Northeast China, and South China. These regions have implemented stringent energy-saving and emission reduction reviews and quota requirements. Despite this, there is limited research on comprehensive life cycle carbon emission calculations and carbon reduction designs. This study addresses this gap by focusing on economically developed regions with high population density and substantial energy-saving potential, specifically targeting the warm winter and hot summer regions of China. Using a commercial building in Shenzhen as a case study, we established a carbon emission accounting model based on the life cycle assessment (LCA) method. We calculated carbon emissions during the material phase using the project’s bill of quantities and relevant carbon emission factors. Additionally, we used the CEEB 2023 software to design energy-saving and emission reduction solutions for the building. Our comparative analysis reveals that the new design reduces the carbon emissions of the case study building by 13.5%. This reduction not only mitigates the environmental impact of construction but also contributes to the fight against the greenhouse effect, supporting the broader goal of sustainable development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call