Abstract

Synthesis of high-efficiency, cost-effective, and stable photocatalysts has long been a priority for sustainable photocatalytic CO2 reduction reactions (CRR), given its importance in achieving carbon neutrality goals under the new development philosophy. Fundamentally, the sluggish interface charge transportation and poor selectivity of products remain a challenge in the CRR progress. Herein, this work unveils a synergistic effect between high-density monodispersed Bi/carbon dots (CDs) and ultrathin graphite phase carbon nitride (g-C3 N4 ) nanomeshes for plasma-assisted photocatalytic CRR. The optimal g-C3 N4 /Bi/CDs heterojunction displays a high selectivity of 98% for CO production with a yield up to 22.7 µmol g-1 without any sacrificial agent. The in situ confined growth of plasmonic Bi clusters favors the production of more hot carriers and improves the conductivity of g-C3 N4 . Meanwhile, a built-in electric field driving force modulates the directional injection photogenerated holes from plasmonic Bi clusters and g-C3 N4 photosensitive units to adjacent CDs reservoirs, thus promoting the rapid separation and oriented transfer in the CRR process. This work sheds light on the mechanism of plasma-assisted photocatalytic CRR and provides a pathway for designing highly efficient plasma-involved photocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.