Abstract
Valuable application prospects and large-scale production technologies are powerful driving forces for the development of materials science. Carbon dots (CDs) are a kind of promising carbon-based fluorescent nanomaterials, which possess wide application prospects based and even beyond the fluorescence properties. Herein, we report the fast and high-yield synthesis of CDs and the large-scale preparation of fluorescent nanofiber films with enhanced mechanical properties. CDs were prepared from magnetic hyperthermia treatment of citric acid and carbamide, with the output of 25.37 g in a single batch. The as-prepared CDs exhibit a high absolute photoluminescence (PL) quantum yield (QY) of 67% and wonderful dispersibility in polar solvents. Then, solution blow spinning of CDs and polymer matrixes of alcohol soluble polyurethane (APU) and polyacrylonitrile (PAN) led to large-area fluorescent CDs-embedded nanofiber films, APU/CDs (size: 120 cm × 18 cm) and PAN/CDs (size: 120 cm × 22 cm), respectively. The resultant large-area APU/CDs and PAN/CDs nanofiber films have dramatically enhanced mechanical properties, to show integrated improvement of tensile strength and elongation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.