Abstract

Diagnosis, treatment, and prediction of cancer progression require new targeting agents to specifically target cell surface receptors. Herein, we demonstrated fluorescent carbon quantum dots-molecularly imprinted polymer (CQD-MIP) for selective targeting and imaging of cancer cells. Carbon quantum dots (CQDs) were synthesized and characterized. The synthesized CQDs had average size of 1.5nm and show intense fluorescence emission at wavelength of 450nm with excitation at 370nm. CQD-MIP nanoparticles imprinted with N-acetylneuraminic acid and glucuronic acid were prepared and characterized. CQD-MIPs were successfully applied for selective targeting and imaging of MCF-7, HepG-2, and NIH-3T3 cell lines. Non-imprinted polymer (NIP) showed no binding properties toward a target molecule. Non-imprinted polymer (NIP) and non-cancerous human cell lines were used for controlling the imprinting and targeting effects, respectively. Acceptable results were obtained with imprinted polymers on cancer cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call