Abstract

Reactive oxygen species (ROSs), acting as functionalized molecules in intracellular enzyme reactions and intercellular communication of immune response, play vital roles in biological metabolism. However, the inevitably excessive ROS-induced oxidative stress is harmful for organ tissue, causing unexpected local anaphylaxis or inflammation. Here, we demonstrate carbon dots (CDs), made of citric acid and glutathione via one-step hydrothermal method, as a highly efficient intracellular ROS scavenger for alleviating the lipopolysaccharide (LPS)-induced inflammation in macrophage. These CDs have broad-spectrum antioxidant properties and the total antioxidant activity exceeds 51.6% higher than that of the precursor, namely, glutathione, in the same mass concentration. Moreover, their antioxidative performance in macrophage inflammation induced by LPS was investigated, and it was found that CDs can efficiently remove up to 98% of intracellular ROS, notably inhibiting nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway, and decrease the expression level of inflammatory factor IL-12. Our results suggested that CDs can serve as a highly efficient intracellular ROS scavenger and could be employed to cope with oxidative stress-induced diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.