Abstract

This work reports an interferometric optical microfiber sensor functionalized with nitrogen- and sulfur-codoped carbon dots (CDs) for the detection of ferric ions (Fe3+). Compared to other CD-based ferric ion sensors, the sensing mechanism of this presented sensor is dependent on the refractive index modulations due to selective Fe3+ adsorption onto the CD binding sites at the tapered region. This is the first study in which CD-based sensing was performed at the solid phase as a chelator, which does not rely on its fluorescence properties. The detection performance of the proposed sensor is not only comparable to a conventional fluorescence-based CD nanoprobe sensor but also capable of delivering quantitative analysis results and ease of translation to a sensor device for on-site detection. The presented sensor exhibits Fe3+ detection sensitivity of 0.0061 nm/(μg/L) in the linear detection range between 0 and 300 μg/L and a detection limit of 0.77 μg/L based on the Langmuir isotherm model. Finally, the potential use of the CD-functionalized optical microfiber sensor in the real environmental and biological Fe3+ monitoring applications has also been validated in this work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.