Abstract

Effective wound care and treatment require a quick and comprehensive assessment of healing status. Here, we develop a carbon dot-doped hydrogel sensor array in polydimethylsiloxane (PDMS) for simultaneous colorimetric detections of five wound biomarkers and/or wound condition indicators (pH, glucose, urea, uric acid, and total protein), leading to the holistic assessment of inflammation and infection. A biogenic carbon dot synthesized using an amino acid and a polymer precursor is doped in an agarose hydrogel matrix for constructing enzymatic sensors (glucose, urea, and uric acid) and dye-based sensors (pH and total protein). The encapsulated enzymes in such a matrix exhibit improved enzyme kinetics and stability compared to those in pure hydrogels. Such a matrix also provides stable colorimetric responses for all five sensors. The sensor array exhibits high accuracy (recovery rates of 91.5-113.1%) and clinically relevant detection ranges for all five wound markers. The sensor array is established for simulated wound fluids and validated with rat wound fluids from perturbed wound models. Distinct color patterns are obtained that can clearly distinguish healing vs nonhealing wounds visually and quantitatively. This hydrogel sensor array shows great potential for on-site wound sensing due to its long-term stability, lightweight, and flexibility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.