Abstract

The concentration of CO2 in stream water is a product of not only instream metabolism but also upland, riparian, and groundwater processes and as such can provide an integrative measure of whole catchment soil respiration. Using a 5-year dataset of pH, alkalinity, Ca2+, and Mg2+ in surface water of the West Fork of Walker Branch in eastern Tennessee in conjunction with a hydrological flowpath chemistry model, we investigated how CO2 concentrations and respiration rates in stream, bedrock, and soil environments vary seasonally and interannually. Dissolved inorganic carbon concentration was highest in summer and autumn (P 0.05). Over the 5 years, pCO2 was always supersaturated with respect to the atmosphere ranging from 374 to 3626 ppmv (1.0- to 10.1-fold greater than atmospheric equilibrium), and CO2 evasion from the stream to the atmosphere ranged from 146 to 353 mmol m−2 d−1. Whereas pCO2 in surface water exhibited little intra-annual or interannual variation, distinct seasonal patterns in soil and bedrock pCO2 were revealed by the catchment CO2 model. Seasonally, soil pCO2 increased from a winter low of 8167 ppmv to a summer high of 27,068 ppmv. Driven by the seasonal variation in gas levels, evasion of CO2 from soils to the atmosphere ranged from 83 mmol m−2 d−1 in winter to 287 mmol m−2 d−1 in summer. The seasonal variation in soil CO2 tracked soil temperature (r2= 0.46, P < 0.001) and model-derived estimates of CO2 evasion rate from soils agreed with previously reported fluxes measured using chambers (Pearson correlation coefficient = 0.62, P < 0.05) supporting the model assumptions. Although rates of CO2 evasion were similar between the stream and soils, the overall rate of evasion from the channel was only 0.4% of the 70,752 mol/d that evaded from soils due to the vastly different areas of the two subsystems. Our model provides a means to assess whole catchment CO2 dynamics from easily collected and measured stream-water samples and an approach to study catchment scale variation in soil ecosystem respiration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call