Abstract

In both its gaseous and condensed forms, carbon dioxide has an ever-increasing impact on Earth's chemistry and human life and activities. However, many aspects of its high-pressure phase diagram remain unclear. In this work, we present a complete structural characterization of carbon dioxide fluids under geological conditions using extensive ab initio molecular dynamics simulations throughout a wide pressure and temperature range, corresponding to Earth's lower mantle. We identify and describe four different disordered regimes, including two polymeric forms and two molecular ones, all within the geothermal conditions of the lower mantle. At pressures below 40 GPa, we find that the molecular liquid becomes very reactive above 2000 K: the C-O double bond routinely breaks, resulting in small and transient chains composed of CO2 units and frequently leading to an exchange of oxygen atoms between molecules. At higher pressures, in addition to the polymeric fluid previously reported at 3000 K, we find a polymeric system with glass-like behavior at lower temperatures, suggesting a complex interplay between kinetics and stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.