Abstract

Carbon capture and geologic storage is a frequently discussed option to reduce atmospheric CO2 concentrations with the long-term risk of leakage from storage sites to overlying aquifers and soils. We chose natural CO2 exhalations, so-called mofettes, in a wetland area in the Czech Republic as analogues to follow the fate of metal(loid)s under CO2-saturated conditions. Compared to the reference fluvisol at the study site, mofette soils exhibited lower pH (4.9±0.05) and redox potential (300±40mV), as well as higher organic carbon contents. Poorly crystalline and crystalline Fe (hydr)oxides, the most important metal(loid) sorbents in the CO2-unaffected soils (7.9±5.9gkg−1), showed significantly lower concentrations under the acidic and reducing conditions in the mofettes (1.2±0.4gkg−1). In turn, this increased the mobility of As and resulting concentrations were up to 2.5 times higher than in the CO2-unaffected pore water (58±18μgL−1). Methylation (up to 11% of total As) and thiolation (up to 9%) contributed to net As mobilisation. Dissolved Mn (131±53μgL−1), Ni (9.1±3.1μgL−1) and especially Cu (2.2±1.0μgL−1) concentrations remained low, likely due to complexation and/or adsorption to organic carbon and the small amount of Fe (hydr)oxides. A one-month-in-situ mobilisation experiment showed mobilisation of all investigated elements to the aqueous phase suggesting that desorption is the faster and initially dominating process while resorption is a secondary, slower process. We conclude that the CO2-induced mobilisation of toxic As and net-immobilisation of essential micro-nutrients (Mn, Ni, Cu) constitute serious risks and must be tested for transferability and relevance at geologic carbon storage sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.