Abstract

Solubility data of carbon dioxide (CO2) in the two ionic liquids 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM][BF4] and 1-butyl-3-methylimidazolium tetrachloroferrate [BMIM][FeCl4] at T = (273.15–413.15) K and pressures up to p = 4.5 MPa are presented. In addition to the experiments, a literature review was done to compare the new results with published solubility data. The measurements were carried out using an isochoric method which operates in decrements of ΔT = 20 K within the investigated temperature range and at selected four different pressure steps ranging from a pressure p of around 4.5 MPa to around 0.5 MPa. The solubility of CO2 decreases in both ionic liquids with increasing temperatures. Within the p,T-range investigated, CO2 displayed a solubility in [BMIM][BF4] from a mole fraction x = 0.0117 and a corresponding molality m = 0.0526 mol·kg−1 at T = 413.15 K and p = 0.417 MPa up to x = 0.4876 and m = 4.2094 mol kg−1 at T = 293.15 K and p = 4.349 MPa. The corresponding values for the solubility in [BMIM][FeCl4] start at a mole fraction x = 0.0268 and a corresponding molality m = 0.0818 mol·kg−1 at T = 413.15 K and p = 0.443 MPa and end at x = 0.5126 and m = 3.1216 mol·kg−1 at T = 293.15 K and p = 4.478 MPa. At a constant temperature, CO2 is better soluble in [BMIM][FeCl4] than in [BMIM][BF4] and the mean value of the solubility difference related to mole fraction x over the pressure range investigated amounts to about 4% at T = 273.15 K and monotonously increases to about 92% at T = 413.15 K. Henry's law constant as well as derived thermodynamic properties, such as the Gibbs energy of solvation, the enthalpy of solvation, the entropy of solvation, and the heat capacity of solvation, were calculated and discussed regarding the solute–solvent molecular interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.