Abstract

Abstract Recently, the catastrophe of global warming by virtue of carbon dioxide emissions has turned into paramount anxiety. To overcome this issue, various carbon dioxide capture and separation processes have been presented so far. Absorption and adsorption are promising methods for carbon dioxide removal, however, the energy penalty drawback of the absorption technology makes the adsorption using solid adsorbents is the prevailing technology nowadays. Adsorption technologies using solid adsorbents eligible for CO2 removal from a gas mixture shown various potential features in comparison with other classic carbon dioxide removal using amine solvents. Thus, numerous groups of researchers have been involved in the modification of new solid adsorbents for carbon dioxide removal with high adsorption capacity and desired economics. Many promising physical adsorbents such as carbonaceous materials (activated carbons, carbon molecular sieve, carbon nanotubes, and graphene) and non-carbonaceous materials (Zeolite-based, silica-based, metal-organic framework materials) for capturing of carbon dioxide have been reviewed. The performance features of the solid adsorbents are evaluated in terms of some desired criteria such as CO2 uptake, CO2 selectivity, adsorbent regeneration, adsorption/regeneration kinetics, and durability. A comprehensive evaluation and analysis study of the literature on the physical solid adsorbents have been executed to update the new progress in this area. A brief comparison of some adsorbents at different stages is located. Finally, some recommendations have been presented for future research to advance the carbon dioxide capturing using physical solid materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.