Abstract

ABSTRACT Natural zeolite is among the low-cost materials that can be used to remove contaminants in biogas. The cleaning of biogas increases its energy density and reduces possible negative effects. The current study aimed to upgrade biogas using natural zeolites. The activation of natural zeolite was done using sodium hydroxide. The adsorbent samples were characterised using an XRF machine, while the biogas samples were analysed using Shimadzu gas chromatography and a portable digital gas detector. The effect of zeolite-to-water ratio on the carbonation process was investigated. In addition, the effects of biogas flow rate, adsorbent dose and contact time on the dry adsorption process were studied. The maximum CO2 uptake of zeolite was 4.8 and 0.2 mmol/g by dry adsorption and wet carbonation process, respectively. The results indicate that surface adsorption favoured by a low Si2O3/Al2O3 ratio was more prominent than carbonation that requires high basic oxides. The results showed that an increase in the dose of activated clay from 2.5 to 35 g increased the removal efficiency of CO2 from 11.2% to 79.8%, while the CO2 uptake decreased from 4.8 to 2.5 mmol/g. Furthermore, the experimental data fitted best to pseudo-first-order kinetics and the Bohart-Adams model for the breakthrough curve.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call