Abstract

BackgroundCobalt-based catalysts are widely employed in methane dry reforming but tend to deactivate quickly due to coke deposits and metal sintering. To enhance the performance, iron, a cost-effective promoter, is added, improving cobalt's metal dispersibility, reducibility, and basicity on the support. This addition accelerates carbon gasification, effectively inhibiting coke deposition. MethodsA series of iron-doped cobalt alumina MFe-5Co/Al2O3 (M= 0, 0.4, 0.8, 1, 2 wt.%) were prepared via simple incipient-wetness impregnation. The catalysts were thoroughly characterized via modern techniques including BET, XRD, H2-TPR, CO2-TPD. Significant findingsThe addition of iron had a minimal impact on the properties of γ-Al2O3, but it significantly affected the dispersibility of cobalt. At an optimal dosage of 0.8 wt.%, there was a notable decrease of 29.44% in Co3O4 particle size. However, excessive iron loading induced agglomeration of Co3O4, which was reversible. The presence of iron also resulted in a decrease in the reduction temperature of Co3O4. The material's basicity was primarily influenced by the loading of iron, reaching its highest value of 705.7 μmol CO2 g−1 in the 2Fe-5Co/Al2O3. The correlation between catalytic activity and the physicochemical properties of the material was established. The 0.8Fe-5Co/Al2O3 sample exhibited excellent performance due to the favorable dispersibility of cobalt, its reducibility, and its affordable basicity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call