Abstract

AbstractConversion of CO2 into valuable compounds, including fuels, with renewable energy sources and sustainable compounds is a challenge addressed by artificial photosynthesis research. In particular, the application of solar assisted electrochemical (EC) processes, in which electrons are furnished by a photovoltaic (PV) cell, is a promising approach. A PV‐EC system is described, consisting of a CIGS (copper indium gallium selenide) PV unit linked to a carbon electrode loaded with cobalt phthalocyanine as molecular catalyst, able to achieve the CO2 reduction to CO and then to methanol in aqueous media with limited bias voltage. Using CO as starting material, a partial current density of ca. 0.6 mA cm−2 for methanol is obtained at a bias voltage corresponding to a low 240 mV overpotential. Remarkably, the liquid fuel production can be sustained for at least 7 h. Under ideal conditions, the CO2‐to‐CH3OH reaction shows a global Faradaic efficiency of 28 %.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.