Abstract

Transition-metal dichalcogenides (TMDs) have promising properties for their use as catalysts of CO2 reduction to methane via the Sabatier reaction. In this article we use density-functional theory calculations to gain insight into the energetics of this reaction for Mo/W-based and S/Se-based TMDs with non-, Ni- and Cu-doping. We show that sulfur-based TMDs with Ni/Cu doping exhibit better indicators for catalytic performance of the CO2 reduction reaction than non-doped and doped TMDs without active sites. In addition, the role of the transition metal was found to a much smaller influence in the reaction than the role of the chalcogen and dopant atoms, which influence the bonding strength and type, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.