Abstract

Two dinuclear homoleptic complexes of lanthanides(ii) supported by the polydentate tris(tertbutoxy) siloxide ligand ([Yb2L4], 1-Yb and [Sm2L4], 1-Sm, (L = (OtBu)3SiO-)) were synthesized in 70-80% yield and 1-Sm was crystallographically characterized. 1-Yb and 1-Sm are stable in solution at -40 °C but cleave the DME C-O bond over time at room temperature affording the crystal of [Yb2L4(μ-OMe)2(DME)2], 2. The 1-Yb and 1-Sm complexes effect the reduction of CO2 under ambient conditions leading to carbonate and oxalate formation. The selectivity of the reduction towards oxalate or carbonate changes depend on the solvent polarity and on the nature of the ion. For both the lanthanides, carbonate formation is favoured but oxalate formation increases if a non-polar solvent is used. Computational studies suggest that the formation of oxalate is favoured with respect to carbonate formation in the reaction of the dimeric lanthanide complexes with CO2. Crystals of the tetranuclear mixed-valence oxalate intermediate [Yb4L8(C2O4)], 3 were isolated from hexane and the presence of a C2O42- ligand bridging two [YbIIL2YbIIIL2] dinuclear moieties was shown. Crystals of the tetranuclear di-carbonate product [Sm4L8(μ3-CO3-κ4-O,O',O'')2], 4 were isolated from hexane. The structures of 3 and 4 suggest that the CO2 activation in non-polar solvents involves the interaction of two dimers with CO2 molecules at least to some extent. Such a cooperative interaction results in both oxalate and carbonate formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.