Abstract

Atypical physiological symptoms can be developed in healthy people under critically ill conditions. pH, pO2 and pCO2 are informative indicators of the conditions of a living system and can be valuable in determining the physiologic status of the critically ill patients. The continuous monitoring of these small molecules into the interstitial fluid (ISF) is a promising approach to reduce diagnostic blood loss and painful stress associated with blood sampling. Microdialysis is the approach followed for the extraction of the sample from the subcutaneous adipose tissue; the drawn interstitial fluid flows through a microfluidic circuit formed by the microdialysis catheter in series with a glass capillary on the internal wall of which the appropriate chemistry for sensing is immobilised. Absorption changes for pH sensor and modulation of the fluorescence lifetime for pO2 and pCO2 are the working principle. Phenol red covalently bound into the internal wall of a glass capillary by means of the Mannich reaction and platinum(II) tetrakis-pentafluorophenyl-porphyrine entrapped within a polymerised polystyrene layer are the chemical transducers used for pH and oxygen detection; the ion pair 8- hydroxypyrene-1,3,6-trisulfonic acid trisodium salt/ tetraoctylammonium hydroxide, dissolved in a silicon-based polymeric matrix, is used for the carbon dioxide detection. A suitable hemorrhagic shock model was developed in order to validate clinically the developed sensors in the condition of extreme stress and the obtained results show that the adipose tissue can become an alternative site for the continuous oitoring of pH, pO2 and pCO2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.