Abstract
In pneumoperitoneum, carbon dioxide eliminated in expired gas (carbon dioxide output) contains both metabolic and absorbed carbon dioxide from the peritoneal cavity. When elimination of carbon dioxide is much higher than carbon dioxide output, storage of tissue carbon dioxide and arterial carbon dioxide concentrations change. Finally, the rate of carbon dioxide eliminated in expired gas is not a match for the real rate of metabolic production and absorbed carbon dioxide from the peritoneal cavity. During and after insufflation of carbon dioxide, changes in carbon dioxide output were elucidated under constant arterial carbon dioxide pressure (PaCO2), the same as the preinduction level. We studied patients undergoing elective laparoscopic cholecystectomy. Carbon dioxide output, oxygen uptake, respiratory exchange ratio (RER), expired minute ventilation (VE), deadspace to tidal volume ratio (VD/VT ratio) and arterial to end-tidal carbon dioxide partial pressure difference (PaCO2-PE'CO2) were determined before induction, and during anaesthesia, pneumoperitoneum and recovery. By controlling ventilatory frequency (f) every 1 min, PaCO2 was adjusted to concentrations before induction. Constant monitoring of end-tidal carbon dioxide partial pressure (PE'CO2) and intermittent measurement of (PaCO2-PE'CO2) (15-min intervals) were conducted to predict PaCO2). Carbon dioxide output and oxygen uptake decreased significantly from mean values of 83.5 (SEM 5.2), 101.6 (5.1) to 68.5 (4.2), 81.1 (4.6) ml min-1 m-2 (ATPS, P < 0.05) with sevoflurane anaesthesia, and RER did not change. During carbon dioxide pneumoperitoneum (intra-abdominal pressure 8 mm Hg), carbon dioxide output increased by 49% (102.4 (5.0) ml min-1 m-2) (P < 0.05) while oxygen uptake remained stable and RER increased from 0.84 (0.02) to 1.16 (0.03) (P < 0.05). It was necessary to increase VE during pneumoperitoneum by 1.54 times that during anaesthesia to maintain individual PaCO2 values constant. After removal of carbon dioxide from the abdominal cavity, the regression equation of excess carbon dioxide output/BSA best fitted a two-compartment model. The time constants of the rapid and slow compartments were 8.2 and 990 min, respectively. Excess carbon dioxide output/BSA was still 5.5 ml min-1 m-2, 30 min after pneumoperitoneum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.