Abstract

In order to further improve and explore the role of lasers for nerve reconstruction, this study was designed to investigate regeneration of sharply transected peripheral nerves repaired with a CO(2) milliwatt laser in combination with three different suture materials and a bovine albumin protein solder as an adjunct to the welding process. Unilateral sciatic nerve repair was performed in 44 rats. In the laser group, nerves were gently apposed, and two stay sutures (10-0 nylon, 10-0 polyglycolic acid, or 25 microm stainless steel) were placed epi/perineurially. Thereafter, the repair site was fused at 100 mW with pulses of 1.0 s. In the subgroup of laser-assisted nerve repair (LANR), albumen was used as a soldering agent to further reinforce the repair site. The control group consisted of nerves repaired by conventional microsurgical suture repair (CMSR), using 4-6 10-0 nylon sutures. Evaluation was performed at 1 and 6 weeks after surgery, and included qualitative and semiquantitative light microscopy. LANR performed with a protein solder results in a good early peripheral nerve regeneration, with an optimal alignment of nerve fibers and minimal connective tissue proliferation at the repair site. All three suture materials produced a foreign body reaction; the least severe was with polyglycolic acid sutures. CMSR resulted in more pronounced foreign-body granulomas at the repair site, with more connective-tissue proliferation and axonal misalignment. Furthermore, axonal regeneration in the distal nerve segment was better in the laser groups. Based on these results, CO(2) laser-assisted nerve repair with soldering in combination with absorbable sutures has the potential of allowing healing to occur with the least foreign-body reaction at the repair site. Further experiments using this combination are in progress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.