Abstract
Mechanical responses of smooth muscle elicited by application of CO2-gas bubbled physiological salt solution (CO2-gas solution) were investigated in isolated stomach antrum and colon preparations of the guinea-pig. Circular smooth muscle preparations of both colon and stomach were spontaneously active with periodic generation of phasic contractions. In colonic preparations, the CO2-gas solution produced a biphasic response, with an initial small transient contraction followed by a sustained inhibition of phasic contractions. Removal of the CO2-gas solution allowed a slow recovery of the spontaneous contractions over a period of about 40 min. The recovery developed with a similar time course irrespective of the length of time exposed to CO2-gas solution. The inhibitory responses elicited by CO2-gas solution were not modulated by atropine, Nω-nitro-L-arginine or neostigmine. Atropine-sensitive excitatory responses of smooth muscle elicited by transmural nerve stimulation or exogenously applied acetylcholine were attenuated or abolished in the presence of CO2-gas solution. In stomach preparations, the CO2-gas solution elicited a tri-phasic response, with an initial transient relaxation followed by a transient contraction and then a sustained inhibition of the rhythmic contractions. The peak amplitude of the transient contraction was about 2.5 times larger than the spontaneous phasic contractions. The pH of the CO2-gas solution was reduced to about 6. Application of pH 6 solution again produced a tri-phasic response, as was the case for the CO2-gas solution, however the amplitude of the transient contraction was only about 0.4 times that of the spontaneous contractions. The re-appearance of the abolished phasic contraction was quicker with the pH 6 solution (about 1.8 min) than it was for the CO2-gas solution (about 6 min). The inhibitory responses elicited by the CO2-gas solution could be simulated only partly by the acidified solution, and a possible involvement of additional factors in the inhibition elicited by CO2-gas solution was considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.