Abstract
The global demand for masks has increased significantly owing to COVID-19 and mutated viruses, resulting in a massive amount of mask waste of approximately 490,000 tons per month. Mask waste recycling is challenging because of the composition of multicomponent polymers and iron, which puts them at risk of viral infection. Conventional treatment methods also cause environmental pollution. Gasification is an effective method for processing multicomponent plastics and obtaining syngas for various applications. This study investigated the carbon dioxide gasification and tar removal characteristics of an activated carbon bed using a 1-kg/h laboratory-scale bubble fluidized bed gasifier. The syngas composition was analyzed as 10.52 vol% of hydrogen, 6.18 vol% of carbon monoxide, 12.05 vol% of methane, and 14.44 vol% of hydrocarbons (C2–C3). The results of carbon dioxide gasification with activated carbon showed a tar-reduction efficiency of 49%, carbon conversion efficiency of 45.16%, and cold gas efficiency of 88.92%. This study provides basic data on mask waste carbon dioxide gasification using greenhouse gases as useful product gases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.