Abstract

Patients with severe pulmonary embolism can suffer progressive hypercapnia refractory to supramaximal mechanical ventilation, and may require open-thoracic or transvenous emergency embolectomy in addition to anticoagulation and/or thrombolysis. The functional recovery of gas exchange would be signaled by an increase in pulmonary CO2 elimination and decrease in CO2 retention; such data could guide the course of operative embolectomy. Accordingly, we studied five chloralose-urethane anesthetized, mechanically ventilated dogs with open thoraces in which the right pulmonary arteries (RPAs) were reversibly occluded with cloth snares. After waiting for steady state, we abruptly released the snare to restore RPA perfusion and experimentally simulate resolution of pulmonary embolism. For 70 min we serially measure the CO (2) volume exhaled per breath (VCO2,br), arterial, mixed venous, and end-tidal PCO2 (PaCO2, PVCO2, PETCO2), cardiac output (QT), and the alveolar dead space fraction (VDalv/VTalv = [PaCO2 - PETCO2]/PaCO2). RPA reperfusion caused VCO2,br to significantly and abruptly increase from 8.9 +/- 2.7 to 11.6 +/- 3.6 mL; 70 min later VCO2,br had returned to baseline. PaCO2 and PVCO2 steadily decreased during 70 min of RPA reperfusion. PETCO (2) increased from 25 +/- 5 to 33 +/- 5 mm Hg immediately after RPA reperfusion, as VDalv/VTalv decreased from 54% +/- 10% to 32% +/- 12%, but PETCO2 was still significantly greater than baseline at 70 min of RPA reperfusion. QT did not significantly change. We conclude that intraoperative measurement of VCO (2),br should immediately detect and follow the resolution of CO2 retention in the lung and peripheral tissues after RPA reperfusion. PETCO2 could not detect the decrease of VCO2,br back to baseline because PETCO2 does not measure exhaled volume or the PCO2 waveform. (Anesth Analg 1996;83:247-53)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.