Abstract

Most studies on toxic inhalation focus on solvent effects and few have dealt with gases on olfactory functioning. Among gases, the effects of carbon dioxide on general physiology have been well investigated contrary to the impact on olfactory neuroepithelium. Thus, this work was designed to evaluate in mice the possible effects of 3% CO(2) in two exposure periods: a 5h/day and a 12h/day conditions. Behavioral, histological and immunohistochemical observations were conducted every 2 weeks, i.e. before (W0), during (W2, W4) and after exposure (W6, W8). Firstly, behavioral evaluations of odor sensitivity showed differences in relation to the odor tested, i.e. no effect with congener urine odor and a reinforcement of 2,4,5-trimethythiazoline (TMT) (predator odor) repulsion. Secondly, histological evaluations showed a similar evolution of the epithelium thickness, i.e. a decrease along the exposure as well as during the post-exposure period and an increase of cell number (whatever the phenotype) although the kinetic appeared different in both experimental conditions. Thirdly, immunohistochemical quantification of olfactory marker protein (OMP)- and proliferating cell nuclear antigen (PCNA)-positive cells revealed that the number of mature olfactory neurons increased at the early beginning of exposure period in both conditions. While a decrease was observed in the following weeks (W4-W8) for the 12h/day condition, a stable amount of OMP-positive cells was maintained in the 5h/day condition. In contrast, the number of PCNA-positive cells followed a similar evolution, i.e. a constant decrease along the experiment. These findings indicate that the effects of CO(2) inhalation exposure are selectively dose-dependent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.