Abstract

The distribution of CO2 in the Mapleson A and D rebreathing systems was investigated experimentally during controlled ventilation and with the expiratory valve closed during inspiration. Maximal and minimal levels of CO2-concentration obtained from capnograms along the tubing were used to construct "gas profiles". For both systems, high tidal volumes and low fresh gas flows resulted in a high degree of gas separation with a pool of alveolar gas near the expiratory valve, and longitudinal gas mixing was minimal. In this manner fresh gas loss was prevented and fresh gas utilization optimized. The end of the tubing nearest the patient was found to act as a reservoir for alveolar gas in the Mapleson A system and fresh gas in the Mapleson D system. Fresh gas utilization in the Mapleson D system was somewhat less efficient than in the Mapleson A system due to the fresh gas admixture to exhaled alveolar gas in the patient-near end of the tubing during expiration. The replacement of the usual expiratory valve of the Mapleson A system by a valve which is closed during inspiration makes the A system an alternative to the D system for controlled ventilation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.