Abstract

Abstract Results were presented from a four-year experimental study on carbon dioxide (CO2) corrosion of carbon (C) steel in two-phase flow. Tests were carried out in a gas and water loop that permitted control and regulation of relevant parameters. Flow rates of gas and water were regulated independently to obtain a number of two-phase flow regimes, such as bubble flow and slug flow. In more than 20 long-term experiments lasting from one to several weeks each, pH was varied from 4 to 7 while the temperature was held at 20°C, 40°C, 60°C, and 80°C in different experiments. Corrosion rates were monitored continuously in time with a radiation detection technique. Scanning electron microscopy analysis and x-ray analysis of the specimen surface and cross section were done on selected specimens after each experiment. It was found that, in cases where the formation of protective films is difficult, flow could have a “positive” role by eroding the iron carbide films that otherwise would accelerate corrosion by ga...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.