Abstract

The reverse water gas shift (RWGS) reaction converts carbon dioxide (CO2) and hydrogen (H2) to syngas, which is used to produce various high-added-value chemicals. This process has attracted great interest from researchers as a way of mitigating the potential environmental impacts of this greenhouse gas, with emphasis on global warming. This work aims to model and simulate an industrial catalytic reactor using kinetic data for the RWGS reaction. The simulation was carried out in Aspen Plus® v10. The thermodynamic analysis showed that the appropriate conditions for the reaction are feed molar ratio (H2/CO2) of 0.8:1, 750 °C, and 20 bar. The RWGS process proceeds in a multi-tubular fixed bed reactor with 36.26% CO2 conversion and 96.41% CO selectivity, at residence times in the order of 2.7 s. These results are at near-equilibrium CO2 conversion with higher CO selectivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call