Abstract
The activation of CO2 and its hydrogenation to methanol are of much interest as a way to utilize captured CO2. Here, we investigate the use of size-selected Cu4 clusters supported on Al2O3 thin films for CO2 reduction in the presence of hydrogen. The catalytic activity was measured under near-atmospheric reaction conditions with a low CO2 partial pressure, and the oxidation state of the clusters was investigated by in situ grazing incidence X-ray absorption spectroscopy. The results indicate that size-selected Cu4 clusters are the most active low-pressure catalyst for catalytic CO2 conversion to CH3OH. Density functional theory calculations reveal that Cu4 clusters have a low activation barrier for conversion of CO2 to CH3OH. This study suggests that small Cu clusters may be excellent and efficient catalysts for the recycling of released CO2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.