Abstract
The extensive microalgae diversity offers considerable versatility for a wide range of biotechnological applications in environmental and production processes. Microalgal cultivation is based on CO2 fixation via photosynthesis and, consequently, it is necessary to evaluate, in a short time and reliable way, the effect of the CO2 gas concentration on the consumption rate and establish the tolerance range of different strains and the amount of inorganic carbon that can be incorporated into biomass in order to establish the potential for industrial scale application. Dynamic experiments allow calculating the short-term microalgal photosynthetic activity of strains in photobioreactors. In this paper, the effect of step-changes in CO2 concentration fed to a 20L bubble column photobioreactor on the CO2 consumption rate of Scenedesmus obtusiusculus was evaluated at different operation times. The highest apparent CO2 consumption rate (336μmolm-2s-1 and 5.6% of CO2) was 6530mgCO2gb-1d-1 and it decreased to 222mgCO2gb-1d-1 when biomass concentration increased of 0.5 to 3.1gbL-1 and 5.6% of CO2 was fed. For low CO2 concentrations (<3.8%) the pH remained close to the optimal value (7.5 and 8). The CO2 consumption rates show that S. obtusiusculus was not limited by CO2 availability for concentrations above of 3.8%. The CO2 mass balance showed that 90% of the C-CO2 transferred was used for S. obtusiusculus growth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.