Abstract

An increased awareness of global atmospheric carbon levels and heightened efforts to recover industrial emissions prior to their release into the environment has led to the availability of an unprecedented amount of carbon dioxide for industrial utilization. Unfortunately, chemical utilization of carbon dioxide as an industrial feedstock is limited by thermodynamic and kinetic constraints. Toxic carbon monoxide, the main competitor in many processes, is used in industry instead because CO2 is perceived to be less reactive and its efficient catalytic conversion has remained elusive. The major commercial uses of CO2 today are in beverages, fire extinguishers, and refrigerants, where inert physical properties such as oxidative and thermodynamic stability are advantageous. It is this stability that has limited the use of CO2 to only a very few synthetic chemical processes (urea, aspirin, carbonates) despite the enormous availability of this resource. The conversion of CO2 into useful organic compounds will likely rely on the use of metal catalysts to lower energy inputs. Increasingly, the use of supercritical carbon dioxide appears to offer significant advantages in the catalytic activation of CO2 to yield useful products. Liquid or supercritical CO2 (sc CO2) can be used as a reaction medium and can potentially replace conventional organic solvents to serve as an environmentally benign reaction medium (Ikariya and Noyori, 1999; Jessop and Leitner, 1999; Jessop et al., 1995b; Noyori, 1999). A supercritical fluid (SCF) is any substance that has a temperature and pressure higher than their critical values and which has a density close to or higher than its critical density (Jessop and Leitner, 1999; Jessop et al., 1995b). Carbon dioxide has a critical temperature of 31.0 °C and a critical pressure of 71.8 bar. The supercritical region of the phase diagram is the one at temperatures higher than the Tc and pressures higher than the Pc at which the liquid and gas phases become indistinguishable. Below Tc, liquid CO2 can be maintained under relatively modest pressures. Subcritical liquid CO2 behaves like any other nonpolar liquid solvent. Properties such as density are continuous above the Tc and discontinuous below it.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call